Stepping Towards Classical-Quantum Computing Interfaces with Microwaves

Building a bridge to the quantum world

Excerpts and salient points ~

+  Entanglement is one of the main principles of quantum mechanics. Physicists from Professor Johannes Fink’s research group at the Institute of Science and Technology Austria (IST Austria) have found a way to use a mechanical oscillator to produce entangled radiation. This method, which the authors published in the current edition of Nature, might prove extremely useful when it comes to connecting quantum computers.

“Imagine a box with two exits. If the exits are entangled, one can characterize the radiation coming out of one exit by looking at the other,” he explains.

+  But the device also has practical value. Mechanical oscillators could serve as a link between the extremely sensitive quantum computers and optical fibers connecting them inside data centers and beyond. “What we have built is a prototype for a quantum link,” says Barzanjeh.

+  Classical computers in networks, on the other hand, are usually connected via optical fibers, because optical radiation is very robust against disturbances that could corrupt or destroy data. In order to use this successful technology also for quantum computers, one would have to build a link that can convert the quantum computer’s microwave photons to optical information carriers or a device that generates entangled microwave-optical fields as a resource for quantum teleportation. Such a link would serve as a bridge between the room temperature optical and the cryogenic quantum world, and the device developed by the physicists is one step in that direction. “The oscillator that we have built has brought us one step closer to a quantum internet,” says first author Barzanjeh.

Source:  IST Austria.  IST Austria,  Building a bridge to the quantum world…

Content may have been edited for style and clarity.