Succinct and broad coverage of the differences between quantum and classical systems at the fundamental level. Well worth the read from the source. Because Quantum is Coming.  Qubit

Breaking Down The Buzz Around Quantum Computing

Read More…

+  A classical computer’s main purpose is to save and manipulate data for working. Its chip uses bits to store this information. These bits are like tiny switches with two states—on and off, represented by one and zero, respectively. From every pixel in an image to the texts exchanged between people, everything is ultimately made up of these bits, a language that the computer understands. But even supercomputers cannot define the uncertain state that exists between on and off, especially on atomic and molecular levels. This makes them capable of only analysing simple molecules in practical applications related to biology and chemistry.

Quantum computing helps scientists and researchers in solving problems above a certain complexity. Quantum computers derive their power by utilising quantum mechanics and marvels such as superposition and entanglement, which allows them to perform a variety of computational tasks exponentially faster than classical computers.

+  Quantum computers use quantum bits (qubits) instead of the regular bits. By combining qubits, a lot more data can be processed in less time as compared to basic computers. Underlying quantum computing is the principle of quantum mechanics. Fundamental quantum properties like superposition, entanglement, and interference are used to manipulate the state of a qubit.

+  According to IBM researcher DiVincenzo’s Criteria, there are five minimal requirements for creating a quantum computer—a well-defined scalable qubit array; an ability to initialise the state of the qubits to a simple fiducial state; a universal set of quantum gates; long coherence times, much longer than the gate-operation time; and single-qubit measurement.

Source:  electronicsforu.com.  Ayushee Sharma,  Breaking Down The Buzz Around Quantum Computing…

Content may have been edited for style and clarity.