TU Delft & QuTech Research Scaling Qubits With Germanium

QuTech researchers are the first to build a single-hole qubit

Points to note…

+  One of the key challenges in building the much coveted and very powerful quantum computer is the building of qubits (quantum bits) that can be scaled to large numbers. Using only standard semiconductor manufacturing techniques, researchers from QuTech have now demonstrated that a single hole, trapped in a germanium quantum dot, can be effectively used as a qubit.

‘Germanium quantum dots have all the essentials,’ Veldhorst explains. ‘They are made with the same technique as used to put billions of transistors on a classical computer chip. We imagine that, with germanium, qubits can be scaled up in the same way.’

+  The very first transistor ever made, in 1947, consisted of the material germanium. Nowadays, most semiconductor devices are made of pure silicon and, therefore, most research into scalable cubits has been based on the use of silicon. Two years ago, however, the QuTech group of Giordano Scappucci showed the feasibility to build germanium structures of the high-quality needed for qubits. Now, Menno Veldhorst and his colleagues have built a germanium quantum dot (a semiconductor particle only a few nanometres in size) capable of trapping a single hole.

+  They are now working on building larger qubit arrays made out of holes in germanium, bringing scalable qubit systems, and therefore the quantum computer, ever closer.

Source:  QuTech.  Menno Veldhorst,  QuTech researchers are the first to build a single-hole qubit …

Content may have been edited for style and clarity. The “+” to the left of paragraphs or other statements indicates quoted material from “Source:” document. Boldface title is original title from “Source:” Italicized statements are directly quoted from “Source:” document. Image sources are indicated as applicable.