Pushing the Upper Bounds of Theoretical Capability with Quantum Entanglement

Learning to Trust Quantum Computers

Excerpts and salient points ~

+  One of the core beliefs behind the push to build quantum computers is that they will power a massive expansion in computing capability. However, how much capability could the technology really bring and, even if we can harness all that power, how can we be sure quantum computing will provide accurate answers when there is no way to run the same algorithms on conventional computers for verification?

+  A paper on the use of quantum entanglement in verifying the solutions to problems published in the spring of 2019 by California Institute of Technology (Caltech) postdoctoral researchers Anand Natarajan and John Wright has shown how quantum computers can prove their results are legitimate. The expansion in what is provable is likely to lead to a situation where the ability of quantum computers to demonstrate the correctness of their calculations far outstrips their ability to compute the results in the first place.

+  The key to checking the work of highly powerful computers lies in a result published in 1988 by Michael Ben-Or and Avi Wigderson of Hebrew University, working together with Shafi Goldwasser and Joe Kilian at the Massachusetts Institute of Technology (MIT). Their original aim was to find a new way to construct authentication systems that did not rely on cryptographic functions that are assumed to be hard for computers to break. To do so, they employed the idea of the zero-knowledge proof, which lets two remote systems (known as provers) demonstrate to a third party, the verifier, that they hold a secret, without revealing the secret itself. Read More…

Source:  COMMUNICATIONS of the ACM.  Chirs Edwards,  Learning to Trust Quantum Computers…

Content may have been edited for style and clarity.