Optical Waves, Synthetic Magnetic Fields, Reversing Time May Lead to Quantum Computers

Exotic physics phenomenon is observed for first time

Points to note…

+  An exotic physical phenomenon, involving optical waves, synthetic magnetic fields, and time reversal, has been directly observed for the first time, following decades of attempts. The new finding could lead to realizations of what are known as topological phases, and eventually to advances toward fault-tolerant quantum computers, the researchers say.xxxxxxxThe new finding involves the non-Abelian Aharonov-Bohm Effect and is reported today in the journal Science by MIT graduate student Yi Yang, MIT visiting scholar Chao Peng (a professor at Peking University), MIT graduate student Di Zhu, Professor Hrvoje Buljan at University of Zagreb in Croatia, Francis Wright Davis Professor of Physics John Joannopoulos at MIT, Professor Bo Zhen at the University of Pennsylvania, and MIT professor of physics Marin Soljačić.

In addition, the non-Abelian gauge fields that the group was able to synthesize produced a non-Abelian Berry phase, and “combined with interactions, it may potentially one day serve as a platform for fault-tolerant topological quantum computation,” he says.

+  The effect has to do with one of the strange and counterintuitive aspects of modern physics, the fact that virtually all fundamental physical phenomena are time-invariant. That means that the details of the way particles and forces interact can run either forward or backward in time, and a movie of how the events unfold can be run in either direction, so there’s no way to tell which is the real version. But a few exotic phenomena violate this time symmetry.

+  At this point, the experiment is primarily of interest for fundamental physics research, with the aim of gaining a better understanding of some basic underpinnings of modern physical theory. The many possible practical applications “will require additional breakthroughs going forward,” Soljačić says.xxxxxxxxxxFoFor one thing, for quantum computation, the experiment would need to be scaled up from one single device to likely a whole lattice of them. And instead of the beams of laser light used in their experiment, it would require working with a source of single individual photons. But even in its present form, the system could be used to explore questions in topological physics, which is a very active area of current research, Soljačić says.

Source:  MIT News.  David L. Chandler,  Exotic physics phenomenon is observed for first time…

Content may have been edited for style and clarity.