Seven Bits About Quantum Computing

Though quantum computers have yet to become reality, there are a number of basic facts one should understand: (1) Quantum computers will not be replacing classical computers. (2) Solving 2^100 could be done in one operation with a quantum computer. (3) Classical systems will be augmented with a quantum computing co-processor; creating a hybrid-system. (4) 50-qubits (stable ones) is considered the tipping point where quantum will finally reign supreme over classical in that a quantum computer with 50 or more stable qubits is expected to be able to produce results to problems classical systems are incapable of ever producing. (5) Stability. 50 qubits are useless if they are not stable; referred to as “coherent”. (6) Quantum software is, as of yet, largely un-explored. (7) Error-correction of qubits is needed to be able to carry a computation through to the end… Thanks to Nick Heath’s work in TechRepublic. July 27, 2018.

Google’s Bristlecone Qubit

Found at TechRepublic…

Using Qubits to Counter Qubit Errors

…without generating more errors or collapsing “the entire enterprise.” July 26, 2018.

This report is found at YaleNews…

Killer App: Chemistry Modeled

University of Sydney physicists exploring uses of quantum computers in modeling chemical bonds have achieved another first. Using 4 qubits from a 20 qubit systems, the team simulated hydrogen and lithium hydride. Use of the molecular hydrogen and lithium hydride were ideal as they are well-understood. This provided a test-case for quantum computing and chemical simulation. July 25, 2018.

“Artist’s impression of lithium hydride molecule approaching its ground state energy.” (Image Credit: Harald Ritsch, IQOQI Innsbruck)

This report is found at APS physics…

Encryption Is In Danger; What About Hashing?

“The goal of a good hash function is to make it extremely difficult for attackers to find ways of generating inputs that hash to the same value…” Quantum computing is certainly a veritable threat to encryption. But what about its sister cryptographic apparatus, the hash? Arguably as important as encryption, the hash provides vital services to verifying data integrity. How much of a threat is quantum computing to this function? July 25, 2018.

This report is found at Medium…

Ytterbium: Rare Earth; Make QC Networks Commonplace?

French and Swiss research teams have tested varying amplitude and direction of magnetic fields around atoms of the rare earth element, Ytterbium. The teams have found a “magic point” which permits a thousand-fold increase in coherence. Such a discovery helps move along the concept of building quantum computing networks with the aid of quantum repeaters. High-coherence (longevity) is needed to ensure signals sent are alive for the entire distance to the receiver, or the next repeater as the case may be. July 24, 2018.

Artist’s impression of a quantum network. (Image Credit: Delft University of Technology)

This report is found at PHYS.ORG…

Quantum-Secure Encryption in Your Smartphone

A team affiliated with the University of Bristol has devised a tiny (1 mm square) random number generator which generates numbers at 2.8 Gbps speeds using silicon photonics technology found in semiconductor fabrication methods. This rate of photon generation and its inherent randomness coupled with a “very low” power consumption give this QRNG potential to secure encryption at the mobile-device level. July 24, 2018.

This report is found at The Optical Society…

Quantum Sensing and Error-Correction

Decoherence is a grind on the effort to move quantum computing forward. Efforts to overcome decoherence, the loss of a coherent state, is a field of much research. Scientists at MIT have published a method to help resolve part of the issue which is a failing to correct the dominant noise type in quantum sensors. Their method exploits spatial correlations involving qubits and tailors the error-corrections to the “noise” vice temporal correlations between signal properties and noise. Full report and discussion is available, below. July 23, 2018.

The report is found here at npj…

Theory of Quantum Computation, Communication and Cryptography (TQC)

The Aussie’s have much to be proud of when it comes to quantum computing research efforts. Microsoft, Google, and IBM each have vested interest in Australia’s centers for quantum science. Last week, the annual Theory of Quantum Computation, Communication and Cryptography (TQC) Conference was held, coupled with the Quantum Software and Quantum Machine Learning international workshops. But the conference is not all that should make Australia proud in their effort on the quantum computing front. July 23, 2018.

This report is found at COMPUTERWORLD…

Canada’s Anti-Stealth Aircraft Radar; Quantum-enabled

Canada’s Department of National Defence’s All Domain Situational Awareness S&T program is putting up a substantial financial investment to develop a stealth aircraft detecting radar using quantum physics. The anti-stealth quantum radar will alert of the approach of a stealth aircraft without giving the aircraft notice it has been detected. It is hoped the cutting edge system will help fill the coming radar station gap along Canada’s northern border expected circa 2025. July 23, 2018.

Using entangled photons to detect stealth aircraft is a focus of study at the University of Waterloo.

This report is found at Knowridge…

Google’s Cirq and OpenFermion-Cirq

Google is gearing up to make Bristlecone available as a cloud computing platform. Bristlecone, Google’s nascent quantum computing platform, will be programmable with Cirq and OpenFermion-Cirq. Cirq, Google’s newly released open-source developer platform, permits quantum algorithm development without requiring a background in quantum physics. It’s twin, OpenFermion-Cirq is tailored to creating chemistry applications; a space likely to be used with quantum computing’s first wave of efforts. July 20, 2018.

More on Cirq from MIT…

China’s Quantum Computing Efforts in Testimony to U.S. House.

Testimony delivered to the U.S. House Permanent Select Committee on Intelligence leaves the winner of the “decades long marathon to develop a fully functional quantum computer” up in the air. Other testimony stated active research is being conducted on “quantum radar, imaging, and navigation technologies” by the Chinese defense industry. Further details are found in this research piece. July 19, 2018.

This report is found at CNAS…

Argument: QC Will Not Destabilize International Security

This work argues quantum computing will not destabilize our world. Two foundational points are made: “Uncertainty [is] an important cause of war” and “institutions [are] an important source of information”. Though requiring some time to read and digest, the argument put forth in this working paper is worth the time for those whose mindset is strategic. July 17, 2018.

The abstract may be read and the PDF viewed here…

Australia: Controlling Qubits on Silicon

Australia, in collaboration with U.S.A.’s Purdue University, surged forward with controlling qubits individually on silicon chips. The ability to control qubits singly is seen paramount to moving ahead in making quantum computing a reality. Additional positive findings were error-reductions in the system due to the ability to control qubits individually when in proximity to each other. This brings quantum computing one step closer to complex computations involving entangled states. July 17, 2018.

Australian and U.S. researchers have accomplished control of two individual qubits within 16 nanometers of one another.

This report is found at the University of New South Wales…

China’s Entangling Photons to Detect Stealth Aircraft

Go back two years to September, 2016, and China’s Electronics Technology Group Corporation’s 14th Institute announced completion of a quantum radar, albeit with a short range of 60 miles (100 km). A microwave beam is used to entangle photons with an optical “idler beam”. The microwave beam is sent from the radar, strikes the stealth target, and returns to the radar site. At the site, the microwave photons are compared with the idler beam photons. Hence, not using radio waves which stealth aircraft are designed to thwart, the photons are capable of providing the position of the stealth aircraft. From this, direction, speed, and other data may be gleaned. It is surmised the radar may be part of the sensor-suite to be carried aboard China’s sub-space airship, Yuanmeng (see image). July 13, 2018.

Yuanmeng, China’s giant sub-space airship. Quite possibly getting equipped with a quantum radar. (Image Credit: snkepu[.]com)

This report is found at POPULAR SCIENCE…

Double-Encryption Mitigates Quantum Threat?

Quantum is coming. When is up for debate. If tomorrow a nation-state announced it had a quantum computer breaking encryption in mere minutes or seconds, would your data be secure? There are ways to mitigate the threat now, before it actually arrives. Crypto-agility is a relatively new term which implies the ability to rapidly change the encryption algorithm being used to encrypt data, be it the data is in motion or at rest. Double-encryption is another method. Employing post-quantum cryptographic algorithms is still, another. July 16, 2018.

This report is found at ENTERPRISETECH…

A Big Concern: Ugly Threat from Quantum

Though the threats from quantum computing are being construed in many different ways, this quote sums up one of the greatest: “Hackers, with many of them supported by nation-states, are actively skimming and stealing encrypted data right now, even though it would take them thousands of years to crack it with current technology.” And they’re storing it so when it can be decrypted [hacked], it will be. July 12, 2018.

This report is found at Nextgov…

Quantum Computing and YOUR Job…

Quantum computing, artificial intelligence (AI), Big Data are all part of the transformative technologies blossoming today. Some call these “disruptive technologies”. Though they may look disruptive at first, history shows technology takes time to change the way we humans operate. Classical computing hit the home and workplace during the 1980’s and into the 1990’s. But before productivity increased with this prolific technology, there was a drop in productivity at the introduction. Fall back to the outset of electricity and the steam engine. The steam engine came about to pump water out of coal mines; electricity lit an office. Adapting these inventions took years before they transformed society. So, will quantum computing, AI, and Big Data, amongst others, take YOUR job? Interesting and thought provoking piece by David Donaldson. July 12, 2018.

James Watt Steam Engine c 1775

This report is found at the Melbourne, Australia-based site, THE MANDARIN…

Big Blue Down Under Awarded A$1 Billion

International Business Machines (IBM), also known as “Big Blue”, has been awarded nearly $750 million U.S. dollars by the Australian government. Quantum computing is ear-marked in the spending. Australia anticipates bringing artificial intelligence, quantum computing, and blockchain into the government’s fold. The quest is to be one of the top digital governments within the next ten years. This deal serves to reduce cost while speeding up the arrival of the Australian government’s digital transformation. July 10, 2018.

This report is found at The Maritime Executive…

Photon-Based Computing

The Joint Quantum Institute and the University of Maryland have created a transistor that is activated by photon interactions. Enabled by a semiconductor chip, the device is the first single-photon transistor. Astonishingly small, it is quite capable. Millions of these transistors could reside within the space of a grain of salt. Yet, the device is able to process nearly 10 billion qubits per second. The device shows promise in advancing quantum computers. July 7, 2018.

Where it all started, the basic transistor.

The original work is found at Cornell University Library…

This report is found at EurekAlert!

Quantum Computation and Quantum Algorithms

Educating ourselves in the fundamentals of quantum computing [or the theory of it] is paramount to understanding even the simplest of quantum topics. This series has two parts: Part 1 breaks down ‘quantum weirdness’ into its constituent parts ~ qubits, spin…Part 2 delves into quantum algorithms from quantum-safe cryptography across Shor’s algorithm to the prospects of machine learning being combined with quantum computing. July 7, 2018.

Bloch sphere; a geometrical representation of a two-level quantum system.

Part 1 is found at InfoQ, here…

Part 2 is found at InfoQ, here…

Diamonds as Repeaters for Q Networks…

Difficulty in maintaining the quantum state of subatomic particles is a major challenge in developing quantum computers. Princeton researchers have managed to maintain quantum data through use of diamonds infused with two carbon atoms per every silicon atom. These ‘flawed’ diamonds ‘could serve as quantum repeaters for networks based on qubits’ just as current networking systems have repeaters to keep signals strong between sender and receiver. Through collaboration with industry, the researchers created electrically neutral, flawed diamonds. The silicon vacancy, as it is called, is capable of transmitting quantum state via photons while storing it using electrons. Both aspects are necessary to create entangled qubits which are needed to create verifiably secure communication channels (cybersecurity). Well-written piece at the below link. July 6, 2018.

The de Leon lab made small substitutions of atoms in the lattice of carbon atoms that make up diamonds, allowing the diamond to serve as a quantum repeater, a device that briefly stores and retransmits quantum information over long distances.
(Image Credit: Graphic courtesy of the Nathalie de Leon lab)

This report is found at Princeton University… 

6 Photons x 3 Degrees of Freedom = 18 Qubits of Entanglement

Renowned researcher, Pan Jianwei, lead a team of physicists from the University of Science and Technology of China with others from Alibaba’s Quantum Computing Laboratory. The research demonstrated entanglement of 6 photons, creating 18 qubits. The entanglements exploited three degrees of freedom encompassing their polarization, orbital angular momentum, and path. This nearly doubles the previous record of 10 entangled qubits. July 5, 2018.

The original work is found at Cornell University Library [PDF]…

This report is found at M…

Sweden Joins the Quantum Race

In ten years’ time, Sweden’s Chalmers University of Technology (Wallenberg Center for Quantum Technology) anticipates having constructed a 100 qubit quantum computer. Today’s estimates are that around 50 qubits are needed to surpass supercomputing capabilities. The Chalmer’s research team being put together will also focus on superconducting qubits and methods to control and link the finicky subatomic particles. A necessity to developing a quantum computer. The $1B investment will employ 15 team members who will also team with industry. Already, Jeppesen, in the aviation industry, and Astrazeneca, a drug manufacturer, have begun collaboration with Chalmers. All stand to gain from the realization of a quantum computer. July 6, 2018.

This report is found at Chalmers University of Technology…

Quantum Learning Machine?

Simulating qubits is no small challenge. Atos’ recent work in modeling noise in quantum systems has allowed simulation of a 41 qubit machine. The anticipated studies with the new device will enable testing of quantum algorithms with artificial intelligence applications. There’s already buyers for the Atos QLM, including the U.S. Oak Ridge National Laboratory, France, and now Austria. July 5, 2018.

This report is found at insideHPC…

“Electron Quantum Optics”

The University of Adelaide is reporting the ability to fire one billion electrons per second using quantum mechanics; repeatedly. This is a major step to “reliable, continuous, and consistent” electron flow using quantum mechanics, a ‘must have’ for quantum computing. Clicking image takes you to schematic’s abstract. July 4, 2018.

“Schematic illustration of the device architecture with gate electrodes in grey and electrons in red.” (Image Credit: American Chemical Society, 2018)

This report is found at the University of Adelaide…

The original work [PDF] is found at Cornell University Library…

U.S. Department of Energy Funding More Quantum Programs.

The U.S. Energy Secretary, Rick Perry, announced new Energy Frontier Research Centers. In particular, the EFRC at University of California, Berkley, will receive funding for the Center for Novel Pathways to Quantum Coherence in Materials. Focus of the center’s quantum studies will be toward the underlying coherence phenomena found in quantum physics. The coherence problem, rather, the problem of de-coherence, plagues advancement of quantum computing. It is hoped new approaches will be developed which enable palatable coherence or sidestep the issue altogether. From July 3, 2018, Ten Second Takes…

U.S. Department of Energy Seal

This report is found…

Going Practical. Personal Quantum Random Number Generator.

Spinoff technology from quantum computing research has produced what is hoped to be a game-changer in cryptographic key security. Quantum Base, a spinoff company from Lancaster University’s Quantum Technology Centre, believe they have solved the problem of true random number generation; made it scalable, and reduced its size such that it can fit in any tech device. Results in many of the random number generators in use for cryptographic keys are predictable be it due to quirks in the algorithm used to vulnerabilities in the device producing the pseudo random number. Studies with quantum tunneling in semiconductors, specifically, RTDs – resonant tunneling diodes – has enabled true quantum random number generation at room temperature. Cryptographic keys utilizing true random numbers may now be produced, say, in your smartphone to secure your data. The applications are many. July 3, 2018.


This report is found at EurekAlert!

Enter Israel

Israel’s Prime Minister’s Office is purportedly setting aside $80M (U.S.) for quantum computing research and development. The Israeli’s intend to join the elite group of nations capable of producing quantum computing systems. The preponderance of funding is ear-marked for the Technion-Israel Institute of Technology. It is hoped the investment for developing Israel’s quantum systems will be on par with Israeli investment in cyberspace. Several of the world leaders in quantum technology – Microsoft, Intel, and IBM – are teaming with Israel’s centers of technology to assist the research. July 3, 2018.

Israel adds to quantum computing research centers.

This report is found at GLOBES…

Fresh Reminder…A Quantum Computing Primer

With the flurry of activity in the quantum computing world of late, The Qubit Report believes it’s time to take a step back. Time to remind ourselves — or just learn — what quantum computing is about fundamentally. Superposition, entanglement, fragility, and “no cloning”, are foundational to quantum computing. See this primer from Intel…July 1, 2018.

Entangled qubits are sent to measurement devices which output a sequence of zeroes and ones. This pattern heavily depends on the type of measurements performed on individual qubits. If we pick the set of measurements in a peculiar way, entanglement will leave unique fingerprints in the measurement patterns (Copyright: Juan Palomino).

This report is found at intel…